Performance of Coded, Noncoherent,
Hard-Decision MSFK Systems

I. Bar-David and S. Butman

Communications Systems Research Section

The capacity of noncoherent multifrequency shift keying (MFSK) systems that
use a hard decision receiver is determined as a function of the predetection signal-
to-noise ratio (ST/N,). For any given predetection signal-to-noise ratio there is an
optimum number of frequencies that maximize the system capacity. This optimum
number decreases as the predetection signal-to-noise ratio decreases. However, it
is shown here that this number is never less than 7. This means that binary fre-
quency shift keying, a commonly used modulation technique at very low data rates,
is suboptimum by at least 2.2 dB, compared to the performance obtainable with
7 signals. Similar results are obtained for the computational cut-off R.omp, when
convolutional coding with sequential decoding is used over such an MFSK chan-
nel. These channels are expected to arise in planetary entry missions into thick
atmospheres, such as those of Venus and Jupiter.

I. Introduction

Noncoherent reception is necessary when the receiver
cannot determine the phase of the received signals. This
situation is likely to occur in missions that enter thick
atmospheres of planets such as Venus, Jupiter, Saturn, and
Uranus. Usually this is due to random phase changes that
are too large to ignore and too rapid to estimate accu-
rately, i.e., the signal-to-noise ratio (SNR) in the predetec-
tion filter, ST/N,, is too low, where S is the rms power of
the received signal, N, is the one-sided noise density and
T is the time interval over which the phase is relatively
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constant albeit unknown, Causes of this type of behavior
in planetary entry are turbulence, dispersion, attenuation
and residual doppler.

Roughly speaking, the time T corresponds to the in-
verse bandwidth of the random phase process. The phase
variations cannot be tracked by a phase-locked loop of
lower bandwidth, while the signal-to-noise ratio in this
minimum loop bandwidth is too low. It is well known
(Refs. 1, 2, and 3) that communication under the de-
scribed conditions requires transmission of signals that
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are orthogonal over a time interval T or less, and their
reception by means of a square-law receiver. Perform-
ance curves plotting the error probability for detecting
one of M = 2% equiprobable signals (corresponding to a
rate of K/T bits/s) as a function of bit signal-to-noise
ratio STs/N,=ST/KN,, have been computed by Lindsey
(Ref. 1). Also, in the limit as T and M approach infinity,
with M growing exponentially, Turin (Ref. 2) has proved
that zero error probability can be attained for all rates up
to the capacity of the infinite bandwidth coherent channel
C., = 1.44 S/N, bits/s. This behavior in the limit is not
surprising because allowing T to grow arbitrarily large
means that the phase tends to an unknown constant
(between — = and =). Thus, it can be estimated with arbi-
trarily high accuracy by diverting a small fraction, e, of
the power to a phase reference signal, since eST/N; — .
Consequently, a coherent receiver can be used and it is
well known (Ref. 3) that C., can then be achieved with
a coded sequence of short duration antipodal signals
(M = 1) instead of the very special orthogonal signal set.

It is not difficult to show that noncoherent signaling
by itself cannot achieve arbitrarily low error rates when
ST /N, is bounded. In fact the error probability increases
as the number of signals, M, increases. Nevertheless, arbi-
trarily reliable communication is still possible at a non-
zero rate (but less than C,) by employing an additional
level of coding (concatenating) on the channel created
by the orthogonal signals and the noncoherent receiver.
Theoretically, error-free transmission is possible at rates
up to the capacity of this noncoherent channel.

The purpose of this article is to investigate the capacity
of the above noncoherent channel as a function of M and
ST/N,, and to draw conclusions pertaining to the design
of coded, noncoherent communication systems.

Il. The Noncoherent Multiple Frequency
Shift Keying Channel

Multifrequency shift keying (MFSK) refers to the case
in which orthogonal signals over time T are harmonics
of the frequency 1/T. Usually the orthogonal signals are
modulated onto a high-frequency carrier and it is the
phase of the carrier as opposed to the phase of the signals
that cannot be tracked. In that case the maximum number
of orthogonal signals that can be distinguished in a sys-
tem of bandwidth W is approximately M = 2WT, since
both sin (2xkt/T) and cos (2+kt/T)k=1,2, - - - ,WT can
be used. However, if the phases of the signals are also
unknown, then only M = WT signals can be distinguished
by the receiver: the sine terms, for instance, must be
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dropped to avoid confusion with phase-shifted cosines.
The model assumes that the carrier phase is statistically
independent every T seconds.

Figure 1 is a block diagram of a noncoherent MFSK
system. During each interval of time T one of M = 2%
orthogonal signals x, (8); m = 1,2, - - - , M with unit
energy is modulated onto a carrier cos ot and arrives in
the presence of additive Gaussian noise n (t) as

r(t) =V 28 xp (t) cos (ot + 0) + n(t) (1)

where 4 is an unknown phase shift uniformly distributed
between — = and =.

The optimum receiver (Ref. 4) for this system computes
the M dimensional test statistic 7 = (r,, 7y, * - -, 7s) where

T = V]%Iﬁ[(ﬁrr(t) xx (t) cosﬂ)tdt>Z

+<ﬁTr(t)xk(t)sinmtdt>zjll/2 2)

It is possible to show (Ref. 4) that the conditional density
of % is

P (ri]xn (1) =

T, exXp (—%r,%) ifks£tm
(3)
rmexp(-érﬁb—éM)Iﬂ(arm) ifk=m
where
o> =28T/N, (4)

and I, (ar) is the modified Bessel function of the first kind

I, (ar) = i/-ﬂexp (ar cos 0) df (5)

2 |,

Now, if no further coding is used, the optimum decod-
ing rule is to declare x, received when 7, is largest. In
Ref. 1 it is shown that the probability of being correct is

e [rem( )]

% exp [— é— (22 + f)] La)dx  (6)
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and the data rate is

_log. M

K
T = Tbits/s (7)

R

It is now well known (Refs. 2, 3, and 4) that

(8)

lim P, =

T—>cx

{ 1 ifR<C,=S8/N,log: e

0 otherwise
however, the bandwidth W grows exponentially as

M or7
W= or =1 ©)

Moreover, as already mentioned, letting T grow to infinity
assumes a constant phase. This means that coherent com-
munication was possible in the first place, and that C.,
could have been achieved with binary signals of duration
approaching zero as %W, where W - o« independent
of T. However, the problem, in general, is not a dearth
of bandwidth; rather it is a lack of ST/N,.

Examination of Eq. (6) reveals that P, < 1 if ST/N, is
finite and decreases ultimately as 1/M, as M increases.
Therefore, additional coding is required if the error prob-
ability for a given ST/N, and M is to be reduced further.
The maximum rate of transmission at which the error
probability can be made arbitrarily small by use of addi-
tional coding is, of course, the capacity of the inner,
MFSK channel, and the main concern of this article.

l1l. Capacity of the M-ary, Noncoherent
MFSK Channel

When the receiver makes a decision as to which one of
M signals is received and discards all other information
the result is an M-ary symmetric channel with crossover
probability (1 — P,)/(M — 1). The capacity of such a
channel is easy to compute (Ref. 5).

C=—[log:M + P.logP.+ (1 — P, log, (1 — P,)

1
T
— (1 - P.)log, (M — 1)] bits/s (10)
= IR (1)
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where

P.log, P, + (1 — P.)log, (1 — P.)
log, M

1(M,ST/N,) =P, +

_ (1 —Pglog. (1 - 1/M)
log, M

(12)
is the information per input bit of the MFSK channel.

Normalizing with respect to C,, = S/N, log; e yields

C IIn2
e 13
Cs, (ST5/No)mrsx (13)
where
A ST S
(ST5/No)ursx = N.K = NE (14)

is the signal-to-noise ratio per input bit of the MFSK
channel.

Figure 2 is a plot of the normalized capacity versus
MFSK signal-to-noise ratio for K=1,2, - - - ,10,15,20
and K— . The K— « curve is obtained from the fact
that P, - 1 if STz/N, < In 2 = 0.693, and P, -> 0 other-
wise; therefore,

(15)

lim —=
K Coc

In2/(STs/N,) otherwise

This reveals, incidentally, that MFSK signaling ap-
proaches C, in a nonuniform manner as K— w0, as
opposed to the uniform convergence obtained over the
coherent binary input, infinite quantized (no hard deci-
sions) Gaussian channel. The nonuniform convergence is
in accord with the threshold effect that is observed in
nonlinear receivers.

Figure 3 is a plot of the minimum required energy-to-
noise ratio per coded bit (E;/N,) coded vs ST /N, for vari-
ous k,

E, _C, ST ST,
(N(’)coded— C 1n27 NO =K NO

Note that the performance with K =1 (2 signals) and
K = 2 (4 signals) is always worse than with K = 3 (8 sig-
nals) for all values of ST/N,. This is proved in the
appendix.
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IV. Convolutional Coding and Decoding Limit

As a guide to the performance obtainable when a con-
volutional code is used over the MFSK channel, it is of
interest to evaluate the computational limit on the de-
codable rate R, Without going into the details treated
adequately in Ref. 3, it can be shown that the expected
number of computations necessary to decode a convolu-
tional code using a sequential decoding algorithm be-
comes infinite if the rate exceeds R.omp. Thus, Reomp is an
effective measure of the rate achievable with convolu-
tional codes. Note that R.,., here is R{ in eqn. 6.62b of
Ref. 3. For the M-ary symmetric channel

1—P:\2
M- 1) ]

1 1
Ruomp = - _flogg["ﬁ< v PC -+ (M - 1)

(16)
= RIcomp (17)
where
2log. (V2. + VBF — (1 —P))
Icomp = - K
(18)
Therefore
B('(\m D I(‘(\lll 1 2
b — v 2 (19)

Co (STB/No)MFSK

yields the normalized computational limit for sequential
decoding per input bit of the MFSK channel, and is
plotted in Fig. 4 per various values of K.

The curves in Fig. 5 are plots of the minimum required
bit energy-to-noise ratio vs ST /N, for various K:

E, _ C,
(N“)Comp B RCOIT\D 1n2

Again, as in the capacity case, we see that the use of 2 and

4 signals is everywhere inferior to using 8 signals for the
inner MFSK channel.
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Figures 6 and 7 are plots of the optimum performance
achievable for given K after optimizing over ST/N,, and
for given ST/N, after optimizing over K. From Fig. 6 it
is evident that improvement with increasing M is very
slow for M > 1000 (K > 10). Since larger values of M are
too complex it also means that when ST/N, > 10 orthog-
onal signaling must be replaced by some other scheme;
such as by partially coherent schemes, or by schemes
involving “soft” decisions in the inner MFSK channel.

Investigation of “soft” decision MFSK systems is cur-
rently under way for both large and small values of
ST/N,. Better performance is to be expected from the
fact that more information is retained when soft rather
than hard decisions are made.

V. Conclusions

This article established performance limits theoreti-
cally achievable over noncoherent channels perturbed by
additive Gaussian noise using orthogonal signals and a
hard-decision MFSK receiver. The performance is, not
surprisingly, a function of the signal-to-noise ratio ST /N,
in the MFSK correlators. These correlators can be thought
of as a predetection filter and ST /N, as the predetection
signal-to-noise ratio. The performance improves as ST/N,
increases provided the bandwidth, as measured by the
number of orthogonal signals, can be increased.

The result of greater practical import, however, con-
cerns operation at moderate and low values of the pre-
detection signal-to-noise ratio, ST/N, < 1.0, where it was
found that the best results are to be obtained by using
about 8 signals.
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Appendix
Capacity at Very Small Values of ST/N,

We will show that

M 2
C ST 2 :1 ST
—C‘:_)TV;< m) /2(M—1) as FO")O

The coefficient multiplying ST/N, on the right hand side
has a maximum value of 0.211 at M = 7. However, the
maximurmn is quite broad and is 0.2107 at M = 8. Therefore,
the optimum mode of communication in a hard-decision
MFSK system at very low signal-to-noise ratios is to use
8 signals (a power of 2 is always convenient). The com-
parative performance of 2, 4, 8, 16, and 32 signals is as
0.1250, 0.1956, 0.2107, 0.1895, 0.1508. In particular the
performance of a binary hard decision frequency shift
keying (FSK) system is 2.28 dB below that of the opti-
mum 7 or 8 frequency system.

To prove the above relationship we note that

1

P.— —
M

as ST/N,—» 0

Therefore, it is convenient to introduce
ey = MP.— 1 (A-2)
Then

InM = - (1 + ew) (1 + o)

M~—-1 EM EM
+ = <L+M_J>M<L+Mt7>

ek

~2M-1)

forey <<1 (A-3)

Since C/C,, = IIn M /(ST/N,) it is necessary to show that

M
ST 1
8m~—N—0— .'I'T‘L-
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In Ref. 1 it is noted that the probability of a correct deci-
sion is also given by

s 3 (e -]

(A-4)
1N M ST/, 1
A E e (el 2]
T (A-5)
Therefore
— M—1 M
— ey, = — —~1) } _-—
T Z( D( i )(1 M—7>
ST, 1)
xew| -5 (11 ]
ST 1
— (—=1)¥exp [—— N_0<1 - ﬁ)] (A-6)
1N M
N _VZ(_D« i >
ST 1
——(1—-= A7
xew[ -5 (1-7)] (a-7)
= exp [—ST/N,] /ST/NO exp [x] P, (x) dx
° (A-8)
= EEP[—_MST/_ZYO_] / 0 xp 6] [1 + ex ()] dx
° (4-9)
Now, ey (0) = 0 and increases with x, therefore
1—exp [—ST/NO]) _
( M ¢ty EM-1
S(imemCoy
(A-10)
or
ST 1 ST 1
—Z\Toﬁ =y — EM,lé’N—O (1 + en) M (A-11)
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However, from the left hand inequality we have ey==¢
for any m = M. Therefore

_ST 1

ST 1
—_— = —
=& sm_l = No (1 + 8M>

= =
N. m m=M

(A-12)

Summing from 2 to M yields

STx 1 ST 1
N Régué<No§:m>(l+eM) (A-13)

m=2 m=2
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thus

o
STN™ L
o N, m

ST i~és

Nodym

m=2 1___§ el

provided the denominator on the right hand side is posi-
tive. Since the upper and lower bounds approach each
other as ST/N,— 0 the desired result is established.

(A-14)
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Fig. 1. Coded hard-decision MFSK system diagram: (a) coder and modem; (b) envelope detector;
(c) hard-decision MFSK receiver
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Fig. 6. Performance vs number of MFSK signals
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Fig. 7. Performance vs predetection SNR
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